
IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63164 700

Consistency Improvisation in MongoDB during

Lag on secondary

Abuzar Kamal
1
, Mr. Saravana Kumar K

2

Student, Department of Computer Science, Christ University, Bangalore, India 1

Assistant Professor, Department of Computer Science, Christ University, Bangalore, India2

Abstract: Replication lag in Mongo database is serious problem in replication environment if the reporting is done

through secondary server, In replication environment the read only query can be routed to secondary server, however if
there is huge lag then it can result into inconsistent data. In the current version this issue has not been addressed, In the

proposed system, an attempt has been made to overcome with this problem. Before execution of query the session

should verify the lag, if the lag is beyond the specified limit then the query should be re-routed back to primary. This is

possible through continuous short messaging between primary and secondary. The metadata about the lag can send

through the messaging, upon reading message the secondary server should re-direct the query to primary server.

Keywords: Mongo DB, Replication, Lag, Consistency, Replica set, NoSQL, CAP Theoram.

I. INTRODUCTION

In MongoDB, replica sets are group of servers which

works together to provides the high availability by

employing the replication. It does not uses the conventional

master-slave replication. Replica Sets improves master-

slave replication with failover capabilities [1]. If a primary
node is down, one of the secondary nodes become new

primary. The secondary node initiates an election among

secondary nodes, if it cannot reach the primary node [2].

Replicates can be used for offloading reads and writes. In

read offloading, secondary nodes will Perform the read

operation. Since replication is asynchronous, and there is

always a time lag between a write request executing on

primary node and the read request executing on secondary

server, data can be inconsistent.

MongoDB cannot ensure the consistency for reads

operation from secondary servers, one can setup the client
and driver to ensure that write guarantee strict consistency

for read operations from secondary members. More over if

the replication strategy includes the cascading replication

then the lag issue will be compounded. In the proposed

system we are making and effort to reduce the

inconsistencies when the read operation is performed on

secondary.

II. MOTIVATION

In real world we do need to offload the reporting queries

to the standby side that reduces the load from the
production but this comes with certain penalty i.e. stale

data. The motivation behind this research is to reduces the

staleness and provide more recent data. As per the

business logic the lagging period can be defined and based

on the lag limit the conditionally query can be routed to

other available standby which has lag under the specified

limit or to the primary.

This proposal certainly not going to make the MongoDB

completely ACID compliant but it’s certainly going to
improve the consistency when replication is in place.

Every business model has different requirement, therefore

by specifying the lag limit the staleness in report can be

reduced.

III. REPLICATION ARCHITECTURE

The opinions and complaints posted on social networking

A replica set in MongoDB is a group of Mongod processes

that maintain the same data set. Replica sets provide

redundancy and high availability, and are basic building
blocks for all production systems. Replication provides

redundancy and high availability. With multiple copies of

data on different database nodes, replication provides a

level of fault tolerance against the loss of a single database

server.

Fig 1. Replication Architecture

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63164 701

Figure 1 shows the replication architecture of MongoDB.

There is one primary and two secondary, The changed

made to the primary is replicated to secondary. Secondary

server does supports the read only query. Hence the read

only query can be routed to secondary. The replication

depends on the network between the nodes, Its uses the

TCP/IP protocol for the communication.

In some cases, replication can provide better read

efficiency as clients can send read operations to different
nodes. Maintaining multiple copies of datain different

location can increase availability for distributed

applications [5]. You can also keep additional copies for

dedicated purposes, such as disaster recovery purpose,

reporting, or backup [9]. The replica set surely gives the

advantage when it comes to high availability and disaster

recover however, it comes with certain penalty which is

lag. Therefore, if the data is read form the system having

lag will result in the stale data.

IV. REPLICATION LAG

Replication lag is the time delay between the last

transaction committed on primary and that the last

transaction applied on secondary [13]. In a smoothly

running replica set, all secondary closely follow changes

on the primary, fetching each group of operations from

its oplog and replaying them approximately as fast as they

occur. That is, replications lag remains as close to zero as

possible. Reads from any node are then reasonably

consistent; and, should the current primary become

unavailable, the secondary that assumes the PRIMARY

role will be able to serve to clients a dataset that is almost
identical to the original.

The problem starts when the lag is huge, so if the

application is configured to route the read query to

secondary then it will not get the latest data because of lag.

Although the MongoDB is not ACID compliant but with

the proposed system the consistency can be improved.

Fig 2 Replication lag

Figure 2 shows the spike in the lag because of network

issue. The replication can never be removed completely
as it depends on network. The lag plays major role in the

deteriorating the consistency. Therefore, to improve the

lag high speed interconnect network should be employed.

Secondary node must have sufficient network bandwidth

so that it can retrieve oplog from primary at the reasonable

rate and also enough storage throughput that it can apply

the oplog i.e., read any affected JASON documents and

their index entries into memory, and commit the altered

JASON documents back to disk nearly at that same rate.
CPU rarely becomes a bottleneck, but it may need to be

considered if there are many index keys to compute and

insert for the documents that are being added or changed.

V. PROPOSITION

In the proposed system the primary can update the

secondary with short message about the current log

sequence, since the message is very shot there is very little

overhead of passing it to the secondary. In the proposed

architectural diagram, Primary and secondary is in

replication mode. Using the interconnection between the
primary and secondary, short message can be sent about

the current transaction log number, Upon receiving the

secondary can verify the lag, Therefore If the lag is

beyond the predefined time then the session will be routed

back to primary.

The size of message should be very small as because

during the time on network congestion. Sending message

during the congestion can be problematic sometimes,

therefore, separate network or subnet can be used to

sending message. This technique is widely available in the
clustered environment. The messaging passing can also

deployed the UDP protocol for faster delivery as the UDP

does not require the 3 way handshaking.

Fig 4. Replication and Message passing Architecture

VI. CONSISTENCY

A relational database is mainly used by application to
storing and retrieving data. Managing a large amount of

data like the internet was incompetent in RDBMS. To

conquer this problem, NOSQL comes into reality. The

name attempt totag the appearance of a mounting number

http://docs.mongodb.org/manual/reference/glossary/#term-oplog

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63164 702

of non- relational, distributed data storage that frequently

did not attempt to give ACID. There are many benefits of

NoSQL as compared to RDBMs, but also there are many

obstacles to overcome before they can appeal to

conventional enterprises.

.
Fig 5. CAP and Mongo

CAP stands for consistency (C), availability (A), and

partition tolerance (P). Therefore, the system only which

supports Consistency and Availability but not the

partition-tolerant, On the other hand the system which

supports Consistency and Partition tolerance not support

highly available, and the system which supports
Availability and Partition tolerance does not supports

consistent. There is fundamental tradeoff between

consistency, availability, and latency. This tradeoff exists

even when there are no network partitions, and thus is

completely separate fromthe trade-offs CAP describes.

The reason for the tradeoff is that a high availability

requirement implies that the system must replicate data. If

the system runs for long enough, at least one component in

the system will eventually fail. When this failure occurs,

all data that component controlled will become

unavailable unless the system replicated another version of
the data prior to the failure.

Consistency is strong in primary MongoDB server even in

replica set configurations. However, secondary nodes

maybe out of sync and MongoDB can only ensure

eventual consistency with respect to the primary

MongoDB server [6]. By default, MongoDB does not

allow reads from secondary servers because of the chances

of inconsistent data, however this can be changed knowing

that changing the default could cause inconsistent data

reads. As per CAP theorem Consistency and Availability

both cannot be achieved together as in this case.

MongoDB allows two distinct types of distributed system:

sharding for horizontal scaling and replica sets for failover

(HA). Both can be employed together or in isolation. CAP

theorem applies little differently to the two forms:

Sharding level - MongoDB stores data set on at most one

authoritative shard.

Replica set level - MongoDB replicates primary data

within a shard, guarantees consistency via a central,

authoritative primary server.

VII. CONCLUSION

The rise of modern e-commerce and social networking

gave rise to the NOSQL databases, which does not fit into

the conventional relation database. The data gathered form
these sources are humongous and the type of data it deals

with is impossible to be handled by the conventional

RDBMS. MongoDB uses the sharding methodology to

handle the humongous data. Replication plays a vital role

while employing the high availability. However, the lag

during the replication major obstacle to offload the query.

The offloading is normally used to reduce the load from

the primary, as MongoDB supports the read only query

from the secondary.

However, while reading form secondary can produce the

stale report because of network lag. From the architectural
prospective eradicating the lag completely is nearly

impossible. Hence the algorithmic approach can be

employed to reduce the lag, in turn improving the

consistency. Improvement at the level one consistency will

play a major role in terms of reliability of the MongoDB.

In today’s world we have number of databases which are

fully ACID compliant, hence for MongoDB to compete

with other relational architecture, this proposition is going

to improve the MongoDB drastically.

REFERENCES

[1] 10gen Inc., “The MongoDB 2.2 Manual,” Online, 2012. [Online].

Available: http://docs.mongodb.org/v2.2/. [Accessed: 03-Feb-

2012].

[2] MongoDB replication DOC

https://docs.mongodb.com/manual/replication/

[3] Alexandru Boicea, Florin Radulescu, Laura Ioana Agapin,

“MongoDB vs Oracle - database comparison”, IEEE 2012

[4] Kris Zyp http://www.sitepen.com/blog/2010/05/11/ nosql-

architecture/, May 2010

[5] http://www.rackspace.com/blog/nosql-ecosystem/

[6] Ruxandra Burtica, Eleonora Maria Mocanu, Mugurel Ionuţ

Andreica, Nicolae Ţăpuş, “Practical application and evaluation of

no-SQL databases in Cloud Computing”, IEEE 2012

[7] Jim Gray, “The Transaction Concept: Virtues and Limitations”,

Proceedings of Seventh International Conference on Very Large

Databases, June 1981

[8] F. Chang et al, “BigTable: A Distributed Storage System for

Structured Data”, Seventh Symposium on Operating System Design

and Implementation, November 2006.

[9] B. Cooper et al, “Benchmarking Cloud Serving Systems with

YCSB”, ACM Symposium on Cloud Computing (SoCC),

Indianapolis, Indiana, June 2010.

[10] B. DeCandia et al, “Dynamo: Amazon’s Highly Available Key-

Value Store”, Proceedings 21st ACM SIGOPS Symposium on

Operating Systems Principles, 2007.

[11] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility

https://docs.mongodb.com/manual/replication/

